Несколько месяцев спустя я встретил нечто изменившее направление моей жизни. Это "нечто" было только что опубликованным сентябрьским выпуском "ScientificAmerican", посвященным полностью мозгу. Это вновь разожгло интересы моей юности относительно мозга. Это было великолепно. Оттуда я узнал об организации, развитии и химических процессах мозга, нейронных механизмах зрения, движения и других функций, а также о биологической основе психических расстройств. Это было одним из лучших выпусков "ScientificAmerican" за все время. Несколько нейрофизиологов, с которыми я общался, сказали мне, что это сыграло значительную роль в выборе их карьеры, так же как и в моей.
Последняя глава, "Раздумья о Мозге", была написана Френсисом Криком, одним из соавторов открытия структуры ДНК, который затем обратил свой талант в направлении изучения мозга. Крик заявил, что назло устойчивому приросту знаний о мозге, до сих пор остается глубокой тайной, как же работает мозг. Ученые обычно не пишут о том, что им неизвестно, но Крика это не беспокоило. Он как мальчик, который сказал "а король то голый!". Согласно Крику, у нейроученых много данных, но нет теории. Его точные слова "чего очевидно не достает - так это идейного каркаса". Для меня это по-джентельменски сказанное "Мы понятия не имеем, как это работает". Это было верно и тогда, и остается верным сейчас.
Слова Крика придали мне силы. Желание моей жизни понять работу мозга и построить интеллектуальную машину было возрождено к жизни. Хотя я только что окончил колледж, я решил поменять карьеру. Я собрался изучить мозг, не только понять, как он работает, но и использовать эти знания как фундамент новых технологий, чтоб построить интеллектуальную машину. Ушло некоторое время, пока эти планы воплотились в действие.
Весной 1980 я переехал в Бостонский офис компании Intel, чтоб воссоединиться со своей будущей женой, которая поступила в ВУЗ. Я занимался обучением пользователей и служащих тому, как проектировать микропроцессорные системы. Но мое рвение было направлено к другой цели: я пытался понять, как же построить теорию мозга. Инженер во мне осознавал, что как только мы поймем, как работает мозг, что мы сможем построить искусственный мозг, из кремния. Я работал на компанию, разработавшую кремниевые чипы памяти и микропроцессор; таким образом, возможно, я мог бы заинтересовать Intel позволить потратить часть моего времени на размышления об интеллекте и о том, как спроектировать мозгоподобные чипы памяти. Я написал письмо председателю Intel, Гордону Муру. Содержимое письма было примерно таким:
Дорогой Доктор Мур,
Я предлагаю организовать исследовательскую группу, занимающуюся изучением работы мозга. Ее можно начать всего с одного участника - с меня - и так далее. Я уверен, что мы можем понять, как он работает. Когда-нибудь это станет большим бизнесом.
Джеф Хокинс
Мур направил меня к главному ученому компании Intel, Теду Хоффу. Я вылетел в Калифорнию на встречу с ним и выложил свои планы по изучению мозга. Хофф был известен по двум вещам. Первая, о которой я был осведомлен - это разработка первого микропроцессора. Вторая, о которой я не знал до этого времени - его работа над теорией нейронных сетей. У Хоффа был опыт в искусственных нейронных сетях и в том, что с ними можно сделать. Я не был готов к этому. Выслушав мои предложения, он сказал, что не верит в то, что в обозримом будущем понять работу мозга, и что для Intel нет смысла поддерживать меня. Хофф был прав, потому что только сейчас, 25 лет спустя, мы только начинаем продвигаться в понимании мозга. В бизнесе время - это все. Однако, тогда я был слегка разочарован.
Я склонился к тому, чтоб с наименьшими потерями достигнуть своей цели. Работа над теорией мозга в Intel могла бы быть наилучшим выходом. Когда эта возможность была отвергнута, я стал искать другую. Я решил обратить внимание на Массачусетский Технологический Институт (MIT), который был известен своими исследованиями в области искусственного интеллекта и был удобно расположен по дороге. Это казалось великолепным совпадением. У меня большой опыт в вычислительной технике - "подходит". У меня желание построить интеллектуальную машину, "подходит". Я хочу сначала изучить мозг, чтоб понять, как он работает… "хмм… с этим проблемы". Эта последняя цель, желание понять работу мозга, было ненужным в глазах ученых из лаборатории искусственного интеллекта MIT.
Это было все равно что ломиться сквозь стену. MIT был родиной искусственного интеллекта. Когда я подал заявление в MIT, он был домом для множества интересных людей, порабощенных идеей запрограммировать компьютер так, чтоб он демонстрировал интеллектуальное поведение. Для этих ученых зрение, язык, роботы и математика были всего лишь вычислительными проблемами. Компьютеры могли бы делать все, что мог бы мозг, и даже больше, зачем же ограничивать мышление биологическими недостатками природных компьютеров? Изучение мозга ограничило бы наше мышление. Они были уверены, что лучше изучать предельные ограничения вычислений, как наиболее выраженные в цифровых вычислительных машинах. Их "Святым Граалем" было желание написать компьютерные программы, которые сначала сравнялись бы, а затем и обогнали человеческие способности. Они выбрали подход "цель оправдывает средства"; их не интересовало, как в работает реальный мозг. Они гордились игнорированием нейробиологии.
Меня поразило, как совершенно неверным способом берутся за проблему. Интуитивно я чувствовал, что ИИ-подход не только будет безуспешным в создании программ, могущих то же, что и человек - он ни за что не объяснит нам, что же такое интеллект. Компьютер и мозг построены на совершенно различных принципах. Первый программируется, второй - самообучается. Первый должен точно и четко работать с любыми данными, второй обладает естественной гибкостью и толерантностью к сбоям. У первого есть центральный процессор, у второго - нет централизованного управления. Список различий можно продолжать и продолжать. Основная причина, по которой я думал, что компьютер не может быть интеллектуальным - это то, что я понимал, как работает компьютер, вплоть до уровня физических процессов в транзисторе, и эти знания давали мне сильное интуитивное ощущение, что компьютер и мозг фундаментально различны. Я не мог этого доказать, но я знал это настолько точно, насколько человек может что-либо интуитивно знать. В конечном счете, я был убежден, что ИИ может привести к полезным изделиям, но он не приведет к построению действительно интеллектуальных машин.
В отличие от этого, я хотел понять реальный интеллект и восприятие, изучить физиологию и анатомию мозга, принять вызов Френсиса Крика и представить миру четко определенную систему взглядов на то, как работает мозг. Я обратил свой взор в особенности на неокортекс - наиболее молодую часть мозга млекопитающих и место локализации интеллекта. После понимания того, как работает неокортекс, мы смогли бы продвинуться в построении интеллектуальных машин, но не раньше.
К несчастью, преподаватели и студенты, которых я встретил в MIT, не разделяли моих интересов. Они не верили, что необходимо изучать реальный мозг, чтоб понять интеллект и построить интеллектуальные машины. Так они мне и сказали. В 1981 году университет отклонил мое заявление.
* * *
Большинство людей сегодня верит, что ИИ-подход жив и здоров, и всего лишь ожидает достаточных компьютерных мощностей, чтоб оправдать свои многочисленные обещания. Когда компьютеры будут обладать достаточным объемом памяти и производительностью, продолжается мысль, программисты ИИ смогут сделать интеллектуальные машины. Я не согласен. ИИ-подход страдает от такого фундаментального недостатка, что он не может адекватно указать, что такое интеллект или что обозначает понимание чего-либо. Краткий взгляд на историю ИИ и на догма, на которых он построен, объяснят, почему это направление сбилось с курса.
ИИ-подход родился с появлением цифровых вычислительных машин. Ключевой фигурой в ИИ-движении был английский математик Алан Тьюринг, один из соавторов идеи компьютера общего назначения. Его великолепной работой стала формальная демонстрация концепции универсальных вычислений: то есть, все компьютеры фундаментально эквивалентны, несмотря на то, как они построены. Как часть своего доказательства, он придумал воображаемую машину из трех основных частей: процессорного блока, бумажной ленты и устройства, которое считывало и записывало метки на ленту, двигая ее взад и вперед. Лента предназначалась для хранения информации, наподобие компьютерных 1 и 0 (это было до изобретения чипов памяти и дисковых накопителей, так что Тьюринг вообразил бумажную ленту для хранения). Блок, который теперь мы называем центральным процессором (CPU), следовал фиксированному набору правил для чтения и изменения информации на ленте. Тьюринг математически доказал, что если вы выберете верный набор правил для процессорного блока и дадите ему бесконечно длинную ленту, он сможет выполнить любые определяемые множества операций во вселенной. Такая одна из многих эквивалентных машин называется Универсальной Машиной Тьюринга. Является ли задачей извлечение квадратного корня, вычисление баллистической траектории, компьютерная игра, рисование изображений или согласование банковской транзакции - в основе нее лежат единицы и нули, и любая Машина Тьюринга может быть запрограммирована, чтоб выполнять ее. Преобразование информации это преобразование информации. Все цифровые компьютеры эквивалентны.
Вывод Тьюринга был бесспорно истинным и феноменально плодотворным. Вся компьютерная революция и все ее продукты базируются на нем. Позже Тьюринг обратился к вопросу как построить интеллектуальную машину. Он чувствовал, что компьютеры могут быть интеллектуальными, но не хотел вдаваться в аргументацию того, возможно это или нет. Он не только не задумывался, сможет ли он формально определить интеллект, он даже не пытался этого сделать. Вместо этого он предложил доказательство существования интеллекта, известный Тест Тьюринга: если сможет обмануть человека-экзаменатора, заставив его думать, что он общается также с человеком, то по определению компьютер интеллектуален. И таким образом, с Тестом Тьюринга в качестве мерила и с Машиной Тьюринга в качестве средства, Тьюринг помог стартовать направлению ИИ. Его центральная догма: мозг всего лишь другой тип компьютера. Не важно, как именно вы проектируете систему искусственного интеллекта, главное сымитировать поведение, подобное человеческому.
Сторонники ИИ увидели параллель между вычислениями и мышлением. Он говорят: - "Смотрите, большинство впечатляющих проявлений человеческого интеллекта несомненно затрагивают манипуляции абстрактными символами - и это именно то, что могут делать также и компьютеры. Что мы делаем, когда говорим или слушаем? Мы манипулируем ментальными символами, называемыми словами, используя хорошо определенные правила грамматики. Что мы делаем, когда играем в шахматы? Мы используем ментальные символы, которые представляют свойства и позиции различных шахматных фигур. Что мы делаем, когда мы смотрим? Мы используем ментальные символы для представления объектов, их положения, их названий и других свойств. Конечно, люди делают все это с помощью мозга, а не компьютера, но Тьюринг показал, что не важно, как вы реализуете манипуляцию символами. Вы можете делать это с помощью системы зубчиков и шестеренок, системы электронных ключей, или с помощью нейронной сети мозга - чем угодно, лишь бы ваше средство могло реализовать функциональный эквивалент Универсальной Машины Тьюринга".
Это предположение было поддержано важным научным документом, опубликованным в 1943 году нейрофизиологом Уорреном Мак-Каллоком и математиком Уолтером Питтсом. Они описали, как нейроны могли бы выполнять цифровые функции, то есть, как нервные клетки предположительно могли бы воспроизводить формальную логику компьютера. Идея заключалась в том, что нейроны могли бы выступать в качестве того, что инженеры называют логическими вентилями. Логические вентили реализуют простейшие логические операции, такие как И, НЕ, ИЛИ. Компьютерные чипы собраны из миллионов логических вентилей, соединенных в определенные сложные контуры. Процессор - это всего лишь набор логических вентилей.
Мак-Каллок и Питтс указали, что нейроны также могли бы быть соединены определенным образом, чтоб выполнять логические функции. Следовательно, нейроны собирают входные сигналы друг с друга и обрабатывают эти сигналы, чтоб решить, следует ли активировать выход, таким образом, предположительно нейроны могли бы быть живыми логическими вентилями. Таким образом, предположили они, мозг мог бы рассматриваться состоящим из И-вентилей, ИЛИ-вентилей и других логических элементов, построенных исключительно из нейронов, в прямой аналогии с соединением цифровых электронных контуров. Не ясно, действительно ли МакКаллок и Питтс верили, что мозг работает именно так, они всего лишь сказали, что так могло бы быть. И, логически рассуждая, такой взгляд на нейроны возможен. Нейроны могут теоретически реализовать цифровые функции. Однако никто не удосужился спросить, как же действительно соединены нейроны в мозгу. Они взяли в качестве доказательства, что несмотря на недостаточность биологических подтверждений, что мозг - всего лишь другой тип компьютера.
Нет ничего хуже, чем ИИ-философия, подкрепленная доминирующей точкой зрения психологии первой половины двадцатого века, называемой бихевиоризмом. Бихевиористы верили, что невозможно узнать, что творится внутри мозга, который они называли неприступным черным ящиком. Но возможно наблюдать и измерять окружение и поведение животного - что оно ощущает и что оно делает, его входы и выходы. Они признавали, что мозг содержит механизмы рефлексов, которые могли бы обуславливать адаптацию поведения животного через поощрения и наказания. Но что либо кроме этого они не считали необходимым изучать в мозге, особенно неопределенные субъективные переживания такие как голод, страх или то, что они значат для понимания чего либо. Излишне говорить, что такая исследовательская философия поблекла во второй половине двадцатого века, но ИИ продолжал гулять возле этого гораздо дольше.
Когда после Второй Мировой Войны электронные цифровые вычислительные машины стали доступны для широкого применения, пионеры ИИ засучили рукава и взялись за программирование. Перевод с языка на язык? Легко! Это всего лишь способ дешифрации. Нам просто надо отобразить каждый символ из Системы А в Систему Б. Зрение? Это тоже кажется легко. Мы уже знаем геометрические теоремы, которые оперируют с поворотами, масштабированием и смещением, и мы легко можем закодировать из в виде компьютерного алгоритма - и полдела сделано! Ученые мужи сделали делали заявления насчет того, как быстро компьютерный интеллект догонит и перегонит интеллект человеческий.
По иронии судьбы, наиболее всего приблизилась к прохождению Теста Тьюринга программа, которая называлась Элиза, прикидывающаяся психоаналитиком и перефразирующая ваши же фразы обратно вам. Например, если кто-то писал "Мой парень и я больше не общаемся", Элиза могла сказать "Расскажи мне о твоем парне" или "Почему ты думаешь, что ты и твой парень больше не общаетесь?". Разработанная в качестве шутки, эта программа действительно обманывала некоторых людей, хотя она была тупой и тривиальной. Более серьезные усилия были приложены к такой программе, как Блочный Мир, эмулирующей комнату с блоками различного цвета и формы. Вы могли задавать Блочному Миру вопросы типа "Есть ли зеленая пирамида на большом красном кубе?" или "Переместить синий куб на маленький красный куб". Программа должна была отвечать на ваши вопросы или пытаться выполнить то, что вы попросили. Она все это эмулировала и она работала. Но она была ограничена своим очень искусственным миром блоков. Программисты не могли обобщить ее, чтоб она делала что-то полезное.