Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство

Уильям Паундстоун Камень ломает ножницы. Как перехитрить кого угодно. Практическое руководство

© William Poundstone, 2014

© Гольдберг Ю., перевод на русский язык, 2014

© Оформление, издание на русском языке.

ООО «Издательская Группа «Азбука-Аттикус», 2015

АЗБУКА БИЗНЕС®


Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.


© Электронная версия книги подготовлена компанией ЛитРес (www.litres.ru)


Пролог Машина для предсказаний

Машина для предсказаний появилась в результате неприятного инцидента в лаборатории. В 1950-х гг. долговязый парень из Огайо по имени Дэйв Хагельбарджер, выпускник Калифорнийского технологического института, работал в научно-исследовательском центре Bell Labs в городе Мюррей-Хилл, штат Огайо. В лаборатории были установлены строгие правила внутреннего распорядка, обязывавшие инженеров носить галстуки. Хагельбарджер работал со сверлильными станками, а посему носил галстук-бабочку – во избежание несчастного случая. Он пытался придумать новый вид компьютерной памяти.

По условиям эксперимента было необходимо, чтобы за выходные вакуумная трубка нагрелась до 400 градусов. Вернувшись в лабораторию в понедельник, Хагельбарджер обнаружил на месте трубки бесформенную жижу: нерадивый помощник оставил в печи виниловые перчатки. Несколько месяцев работы коту под хвост.

Расстроившись, Хагельбарджер взял несколько дней отпуска, чтобы почитать и подумать. Он решил, что теперь займется машиной для чтения мыслей.

Идея пришла к нему со страниц научно-фантастического журнала Astounding Science Fiction за декабрь 1950 г., с грибовидным облаком на обложке. Автор одной из статей, Дж. Дж. Коплинг, рассуждал, что компьютер можно научить сочинять музыку, анализируя статистические закономерности уже написанных произведений и составляя подобные композиции, только новые.

Коплинг представил музыку собственного сочинения, созданную с помощью игральной кости и таблицы случайных чисел, – за год до того, как Джон Кейдж начал похожие эксперименты с китайской «Книгой перемен». Коплинг обратил внимание, что добиться случайности не так просто. «Попросите, например, какого-нибудь человека составить случайную последовательность чисел, – писал он. – Статистические исследования таких последовательностей показали, что они совсем не случайные; человек не способен составить случайную последовательность чисел, никак не связанных между собой».

Хагельбарджера заинтересовали эти идеи. Однако в отличие от большинства любителей научной фантастики он решил их реализовать и в итоге построил машину для предсказания выбора, который сделает человек. Машина играла в игру «сравнение монет», которой издавна развлекались дети на школьном дворе. Два игрока зажимали в кулаках монетки, орлом или решкой вверх, а затем одновременно открывали их. Заранее договаривались, кто выигрывает, если положение монет совпадает; если не совпадает, выигрывает другой.

Машина для предсказаний, как назвал ее Хагельбарджер, представляла собой большую прямоугольную коробку высотой около трех футов. На передней панели располагались две лампочки и две кнопки с обозначением «+» и «–» – варианты, соответствующие орлу или решке. Машина выступала в роли спарринг-партнера, схема должна была предсказывать действия соперника. Человек выбирал «+» или «–» и вслух объявлял об этом. Затем нажимал кнопку, и машина выдавала предсказание, зажигая одну из двух лампочек.

Объявлять решение вслух было частью спектакля. В 1950-х гг. никакая машина не умела распознавать человеческий голос. Она делала выбор до того, как игрок раскрывал рот.



Оптимальная стратегия такова: выбор должен быть случайным, с 50-процентной вероятностью орла или решки. Это известно любому ребенку, знакомому с игрой. «Стратегия машины основана на двух допущениях», – объяснял Хагельбарджер. Какова она?

(а) Выбор человека не случаен. На последовательность ходов в игре влияет опыт и эмоции. Например, некоторые люди, выиграв два раза подряд, боятся «спугнуть удачу» и повторяют действия. Другие, наоборот, не хотят «искушать судьбу» и изменяют решение. Но машина в обоих случаях их поймает.

(б) Чтобы запутать соперника, машина будет пытаться предсказать его действия только в случае своего выигрыша, а при проигрыше будет делать случайный выбор.

В пункте (а) описана стратегия нападения. Машина постепенно выявляет бессознательные закономерности в действиях соперника и использует их для предсказания. В пункте (б) – стратегия защиты. Столкнувшись с противником, действия которого предсказать невозможно, машина начинает играть случайным образом и выигрывает в 50 процентах случаев.

Несколько недель Хагельбарджер донимал коллег, предлагая сыграть с машиной. Ему требовался большой объем данных, чтобы убедиться, что она работает. Пытаясь повысить привлекательность машины, он снабдил ее двумя рядами по 25 лампочек, располагавшимися на верхней части. Каждый раз, когда выигрывала машина, загоралась красная лампочка. Если выигрывал человек, загоралась зеленая. Задача игрока состояла в том, чтобы зажечь весь ряд своих лампочек раньше машины.

Один из ученых проводил перед машиной все обеденное время. Другой разработал систему игры, задавая себе «случайные» вопросы, на которые можно ответить «да» или «нет», например: «Надел ли я сегодня утром красный галстук?» Ответ преобразовывался в «орла-или-решку», что придавало игре случайный характер. Записав результаты 9795 игр, Хагельбарджер выяснил, что его машина выиграла 5218 раз – то есть в 53,3 процентах случаев. Преимущество машины оказалось невелико, но зато результат статистически значим.

Затем с машиной захотел сыграть кто-то из начальников Хагельбарджера. И без труда выиграл. Как заметил один из его коллег: «Любому ученому или инженеру знаком пресловутый синдром начальника, когда в присутствии высшего руководства все идет наперекосяк».


В 1950-х гг. такие исследовательские центры, как Bell Labs, привлекали людей талантливых, порой и с проблеском гениальности. Некто Джон Пирс занимал особую должность – собирал самые лучшие идеи и заставлял авторов реализовывать их. Инженер с дипломом Калифорнийского технологического института, Пирс выступал в роли подстрекателя, мотиватора и наставника. Возможно, самым трудным из его подопечных оказался Клод Шеннон. Один из их диалогов стал притчей во языцех. «Ты должен с этим что-то сделать», – говорил Пирс Шеннону. «Должен? – отвечал Шеннон. – Что значит “должен”?»

Шеннону шло к 40 годам. У него было красивое лицо с несколько резкими чертами. Он приходил на работу, когда хотел, и уходил, когда хотел. Ему это позволялось, поскольку он опубликовал книгу, настолько ценную для компании AT & T [1], что после нее любые претензии выглядели мелочными придирками. На самом деле Шеннон – крестный отец компьютерной эры. В его докторской диссертации в Массачусетском технологическом институте (MTI) говорилось, что символическая логика может быть передана с помощью электрических сигналов, а электроцепи возможно использовать для вычислений с двоичным кодом («0» и «1») вместо десятичного.

Шеннон работал в Институте перспективных исследований в Принстоне. Его первая жена Норма угощала чаем Эйнштейна, а тот говорил, что она «замужем за блестящим, просто блестящим» человеком. Это было еще до публикации самой знаменитой статьи Шеннона «Математическая теория связи» (A Mathematical Theory of Communication, 1948). С нее началась теория информации. Согласно революционным представлениям Шеннона, информация – одна из основ нашего мира, наравне с материей и энергией, и подчиняется собственным законам. Их изучение привело к возникновению интернета и всех цифровых медиа.

Теория информации дала Шеннону новый инструмент. Попытавшись применить его для изучения поведения людей, он столкнулся с несколькими сюрпризами. Одним из них стало то, что действия людей можно предсказывать с высокой точностью.

Так, например, Шеннон выяснил, что все естественные языки имеют множество избыточных и предсказуемых элементов. Слушая собеседника, мы предугадываем, что он скажет, и с большим вниманием относимся ко всему неожиданному. Примерно так же поступают современные программы распознавания речи.

Интерес Шеннона к языкам вдохновил Пирса, под псевдонимом Дж. Дж. Коплинг написать об исследователе статью для журнала Astounding Science Fiction. Там он также изложил идеи Шеннона относительно компьютерной музыки. Впоследствии теоретики музыки предположили, что слушатель постоянно предугадывает несколько следующих нот на основании нескольких предыдущих. Восприятие музыки в значительной степени зависит от того, насколько она соответствует или не соответствует нашим ожиданиям.

Нормальный гений потратил бы остаток творческой жизни на возделывание плодородного поля, которое вспахал самым первым. Но Шеннон, создав основополагающий труд, забросил теорию информации. Его интересы сместились в область вычислительных машин и, до некоторой степени – человеческого разума. «Мы надеемся, – написал он однажды, – что исследования в области игровых машин позволят понять, как работает человеческий мозг».

Шеннон много времени тратил на конструирование самых невероятных устройств. В 1950 г. он создал одну из первых машин, способных играть в шахматы, а позднее – пару механических рук, умеющих собирать кубик Рубика. Настольный калькулятор Шеннона под названием THROBAC работал с римскими цифрами. Но самым известным его изобретением был Тезей, механическая мышь, находившая дорогу в алюминиевом лабиринте. О Тезее сняли короткометражный фильм, после чего Шеннон обрел звездную славу.

Затем, приблизительно в 1952 г., появилась «абсолютная машина». Любопытному наблюдателю предлагалось нажать на тумблер, чтобы включить ее. После этого выдвигалась механическая рука, возвращала тумблер в первоначальное положение и снова пряталась. Это сюрреалистическое действо было обречено стать мемом. Попробуйте набрать в поисковике Google «абсолютная машина». На рынке и в научных музеях можно найти огромное количество ее копий и имитаций. На YouTube даже есть видео с «абсолютной машиной», сделанной из кубиков Lego.

Подобно многим застенчивым людям, Шеннон был склонен к экстравагантным выходкам. Известно, что он катался по коридорам исследовательского центра Bell Labs на одноколесном велосипеде, иногда при этом жонглируя. Какое-то время он использовал ходули в качестве альтернативного средства передвижения из кабинета в кабинет. Глядя со стороны, можно было подумать, что он из научного гения превращается в клоуна-иллюзиониста. Однако он исследовал – на свой манер – глубокие проблемы. Одна из них формулировалась так: насколько сложной должна быть машина, чтобы перехитрить человека? Как выразился его коллега Дэвид Слепян: «В интеллектуальном плане он был лучшим в мире мошенником».


Среди немногих сотрудников Bell Labs, которых привечал Шеннон, оказался Дейв Хагельбарджер. Они часто обедали вместе в лаборатории Хагельбарджера, развлекаясь со всякими хитроумными приспособлениями. Однажды Хагельбарджер подключил Шеннона к электроэнцефалографу, чтобы проверить, отражается ли блеск его ума на конфигурации кривых. Ничего необычного. Тогда они подключили энцефалограф к прибору для предсказаний. Полученные кривые были похожи на сигналы, идущие от Шеннона! Выяснилось, что двигатель внутри машины вращается со скоростью, совпадающей с периодом альфа-ритма человеческого мозга.

Разумеется, Шеннону понравилась машина для предсказаний, и он решил сконструировать свою собственную. Его устройство не было копией – оно превзошло прообраз. В длинной последовательности партий с одним и тем же человеком машина Шеннона выигрывала в 65 процентах случаев. Ее превосходство над человеком было очевидным, и эта новость стала главной в курилках лаборатории. В 1950-х гг. через Bell Labs прошла череда блестящих и честолюбивых исследователей, инженеров и математиков. Предсказывающая машина Шеннона стала для них «мечом в камне» [2]. Каждый претендовавший на выдающийся интеллект считал своим долгом бросить Шеннону вызов. Немногие смогли побороть искушение, и еще меньше было тех, кто избежал унижения. Напряжение нагнеталось и тем, что переиграть машину-предсказателя мог только сам Шеннон.

Свое устройство он описал 18 марта 1953 г. в служебной записке под названием «Машина для чтения мыслей (?)». Там отмечалось, что игра в совпадения имеет славную историю и даже нашла отражение в литературе. Она была «проанализирована с точки зрения теории игр [Джоном] фон Нейманом и [Оскаром] Моргенштерном, а с точки зрения психологии Эдгаром Алланом По в рассказе “Похищенное письмо”. Как это ни странно, машина использует скорее метод По, чем Неймана». Герой психологического детектива, сочиненного По, раскрывает преступления, изначально допуская, что люди, пытаясь имитировать случайность, ведут себя предсказуемо.

В наше время суперкомьютеры играют в шахматы, и в победе машины над человеком нет ничего удивительного. Но в 1950-х гг. успех машины казался почти магическим, и термин «машина для чтения мыслей», использованный Шенноном, был основан на реакции большинства людей. Чем дольше человек играл с машиной Шеннона, тем лучше она угадывала его мысли.

Манфред Шредер из Bell Labs захотел похвастаться и показал машину гостю лаборатории математику Фрицу Хирцебруху. Хирцебрух выиграл первые 13 партий подряд. Неужели у машины Шеннона нашелся достойный соперник?

Ничего подобного. Машина выиграла 14-ю партию. И 16 из 17 следующих, опередив знаменитого математика. Хирцебрух продолжал играть, но тщетно. Ему так и не удалось вести в счете.


Многие годы я то и дело сталкивался с упоминаниями о предсказывающей машине Шеннона и, наконец, задумался, сохранилась ли она. Я знал, что Шеннон был барахольщиком, захламлявшим свои дома игрушками, разными устройствами и памятными вещицами. После его смерти семья пожертвовала все эти сокровища музею Массачусетского технологического института. Я заглянул на сайт музея и нашел то, что искал – «машину, играющую в сравнение монет».

Несмотря на значение этой машины в истории искусственного интеллекта, в постоянной экспозиции ее нет. Чтобы увидеть ее, пришлось посетить запасники музея – кирпичное здание без окон размером со склад-магазин Costco, в городе Сомервилль. Здесь хранится любопытная коллекция невероятных изобретений и разнообразного реквизита для университетских розыгрышей. Например, с потолочных балок, словно чучело крокодила в старинной кунсткамере, свисала огромная банка энергетического напитка Jolt Cola.

Предсказывающая машина Шеннона представляет собой коробку из оргстекла размерами приблизительно 30 × 30 см, с непрозрачной черной крышкой, слегка наклоненной к игроку для лучшей видимости. Верхняя квадратная часть выполнена с изрядной долей юмора и напоминает лицо. Две лампочки вместо глаз, кнопка вместо носа и красный тумблер в черной щели рта. Устройство переносное, хотя и тяжелее ноутбука. Слева прочная ручка для транспортировки.

Корпус из оргстекла позволяет увидеть конструкцию со всех сторон. Я даже смог перевернуть машину и заглянуть через прозрачное дно. Жгут проводов заплетен аккуратной косичкой, как в старинном коммутаторе фирмы AT & T.

Ряды лампочек Хагельбарджера Шеннон заменил счетчиком в стиле ретро. В нем использован тот же принцип, что и в «Маятнике Ньютона», настольной игрушке, которая состоит из нескольких подвешенных на нитке стальных шариков. В зависимости от того, кто выигрывает, машина или игрок, стальной шарик выстреливает в одну из двух стеклянных трубок. Шарик передает энергию нескольким точно таким же шарикам, последний из них отправляется в колонку для подсчета очков. Каждая победа сопровождается громким щелчком.



«Чтобы составить представление об умственной деятельности машины для предсказаний, задумайтесь вот над чем: у человека 1010 нейронов, у самого тупого муравья-воина 200 нейронов, а у этой машины меньше 100 реле». Так описывал свою машину Хагельбарджер. Шеннон вполовину сократил число реле. Память его устройства составляла всего 16 бит, то есть 2 байта или 0,0000000018 гигабайта. И этого оказалось достаточно, чтобы победить человека, даже если игрок разрабатывал стратегию и размышлял, хитрил и мудрил.

На машине Шеннона два варианта выбора обозначены как «правый» и «левый». В первой партии машина делает случайный выбор при помощи быстро вращающегося коммутатора – своего рода механической рулетки. Затем постепенно выявляет бессознательные закономерности в действиях соперника. Убедительная победа системы учета информации над программой! Представьте шахматиста, который записал все ответы Гарри Каспарова на гамбит Блюменфельда, встречавшиеся в его партиях: это позволит предсказать ходы Каспарова при следующем розыгрыше гамбита.

Дальше